Sains Malaysiana 53(9)(2024): 3197-3213

http://doi.org/10.17576/jsm-2024-5309-23

 

Credible Delta Gamma (Theta) Normal Value at Risk for Assessing European Call Option Risk

(Nilai Normal Delta-Gamma (Theta) Berisiko Boleh Percaya untuk Menilai Risiko Pilihan Panggilan Eropah)

 

EVY SULISTIANINGSIH1, DEDI ROSADI2,* & MAHARANI ABU BAKAR3

 

1Department of Mathematics, Universitas Tanjungpura. Jl. Prof. Dr. H. Hadari NawawiPontianak, 78124 Indonesia 

2Department of Mathematics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

3Department of Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

Diserahkan: 19 November 2023/Diterima: 9 Julai 2024

 

Abstract

The current research introduces a novel risk metric called credible delta-gamma (theta)-normal Value-at-Risk (CredDGTN VaR) for the purpose of the option risk assessment. CredDGTN VaR represents an extension of the credible Value-at-Risk (CredVaR) framework, whereby risk assessment is conducted through the integration of CredVaR with delta-gamma(theta)-normal VaR. The present study introduces a novel approach that is deemed suitable for evaluating the risk of a portfolio of European call options. The proposed method takes into account the nonlinear interdependence of the market risk factors determining the value of a European call option, according to the Formula of Black-Scholes. The present methodology is employed to assess simulated financial data that portrays the return of multiple assets throughout ten investment periods. The novel approach is additionally employed to assess the level of risk associated with a portfolio comprised of actively traded stock options. According to Kupiec's backtesting, CredDGTN's efficacy in gauging the risk of an option portfolio is noteworthy, as it accurately measures the risk at 80%, 90%, and 95% confidence levels, even in cases where the profit/loss (P/L) exhibits non-normal distribution. Furthermore, the performance of CredDGTN VaR empirically outperforms credible delta-normal VaR (CredDN VaR) and credible delta-gamma-normal VaR (CredDGN VaR) in similar cases. Moreover, CredDN VaR, CredDGN VaR, and CredDGTN VaR will provide equal VaR when delta and gamma are zero.

 

Keywords: Greek; mixed-assets; portfolio

 

Abstrak

Penyelidikan ini memperkenalkan metriks risiko baharu yang dipanggil nilai normal delta-gamma (theta) berisiko boleh percaya (CredDGTN VaR) untuk tujuan penilaian risiko pilihan. CredDGTN VaR mewakili lanjutan daripada rangka kerja Nilai Berisiko (CredVaR) boleh percaya yang mana penilaian risiko dijalankan melalui penyepaduan CredVaR dengan delta-gamma(theta)-normal VaR. Kajian ini memperkenalkan pendekatan baharu yang dianggap sesuai untuk menilai risiko portfolio pilihan panggilan Eropah. Kaedah yang dicadangkan mengambil kira kebergantungan tidak linear faktor risiko pasaran yang menentukan nilai pilihan panggilan Eropah, menurut Formula Black-Scholes. Metodologi sedia ada digunakan untuk menilai simulasi data kewangan yang menggambarkan pulangan berbilang aset sepanjang sepuluh tempoh pelaburan. Pendekatan baharu ini digunakan untuk menilai tahap risiko yang berkaitan dengan portfolio yang terdiri daripada pilihan saham yang didagangkan secara aktif. Menurut pengiraan ke belakang Kupiec, keberkesanan CredDGTN dalam mengukur risiko portfolio pilihan patut diberi perhatian, kerana ia mengukur risiko dengan tepat pada tahap keyakinan 80%, 90% dan 95%, walaupun dalam kes keuntungan/kerugian (P/L) menunjukkan taburan bukan normal. Tambahan pula, prestasi CredDGTN VaR secara empirik mengatasi VaR delta-normal boleh percaya (CredDN VaR) dan VaR delta-gamma-normal boleh percaya (CredDGN VaR) dalam kes yang serupa. Selain itu, CredDN VaR, CredDGN VaR dan CredDGTN VaR akan memberikan VaR yang sama apabila delta dan gamma adalah sifar.

 

Kata kunci: Aset gabungan; Greek; portfolio

 

RUJUKAN

Ammann, M. & Reich, C. 2001. Var for nonlinear financial instruments|linear approximation or full monte carlo? Financial Markets and Portfolio Management 15: 363-378.

Britten-Jones, M. & Schaefer, S.M. 1999. Non-linear value-at-risk. Review of Finance 2(2): 161-187.

Biihlmann, H. & Straub, E. 1970. Glaubwiirdigkeit fur schadensatze. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 70: 11-113.

B hlmann, H. 1969. Experience rating and credibility. ASTIN Bulletin: The Journal of the IAA 5(2): 157-165.

Castellacci, G. & Siclari, M.J. 2003. The practice of delta gamma var: Implementing the quadratic portfolio model. European Journal of Operational Research 150(3): 529-545.

Chen, R. & Yu, L. 2013. A novel nonlinear value-at-risk method for modeling risk of option portfolio with multivariate mixture of normal distributions. Economic Modelling 35: 796-804.

Chen, Y., Liu, Y-K. & Chen, J. 2006. Fuzzy portfolio selection problems based on credibility theory. In Advances in Machine Learning and Cybernetics. Lecture Notes in Computer Science, edited by Yeung, D.S., Liu, Z.Q., Wang, X.Z. & Yan, H. Berlin, Heidelberg: Springer. 3930: 377-386.

Cui, X., Zhu, S., Sun, X. & Li, D. 2013. Nonlinear portfolio selection using approximate parametric value-at-risk. Journal of Banking & Finance 37(6): 2124-2139.

Date, P. & Bustreo, R. 2016. Measuring the risk of a non-linear portfolio with fat-tailed risk factors through a probability conserving transformation. IMA Journal of Management Mathematics 27(2): 157-180.

Diao, L. & Weng, C. 2019. Regression tree credibility model. North American Actuarial Journal 23(2): 169-196.

Feuerverger, A. & Wong, A.C. 2000. Computation of value-at-risk for nonlinear portfolios. Journal of Risk 3: 37-56.

Georgescu, I. & Kinnunen, J. 2013. A risk approach by credibility theory. Fuzzy Information and Engineering 5(4): 399-416.

Kananthai, A. & Suksern, S. 2016. On the parametric interest of the option price from the black-scholes equation. IAENG International Journal of Applied Mathematics 46(1): 87-91.

Karimalis, E.N. & Nomikos, N.K. 2018. Measuring systemic risk in the european banking sector: A copula covar approach. The European Journal of Finance 24(11): 944-975.

Kupiec, P. 1995. Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives 3(2): 73-84.

Liu, N., Chen, Y. & Liu, Y. 2018. Optimizing portfolio selection problems under credibilistic cvar criterion. Journal of Intelligent & Fuzzy Systems 34(1): 335-347.

Mina, J. & Ulmer, A. 1999. Delta-gamma four ways. Technical Report. https://www.msci.com/www/research-report/delta-gamma-four-ways-/018387524

Ortiz-Gracia, L. & Oosterlee, C.W. 2014. Efficient var and expected shortfall computations for nonlinear portfolios within the delta-gamma approach. Applied Mathematics and Computation 244: 16-31.

Pitselis, G. 2013. Quantile credibility models. Insurance: Mathematics and Economics 52(3): 477-489.

Pitselis, G. 2016. Credible risk measures with applications in actuarial sciences and finance. Insurance: Mathematics and Economics 70: 373-386.

Sulistianingsih, E., Rosadi, D. & Abdurakhman. 2023. Credible delta normal value at risk for risk evaluation of European call option. Industrial Engineering & Management Systems 22(1): 20-30.

Sulistianingsih, E., Rosadi, D. & Abdurakhman. 2021. Credible delta-gamma-normal value-at-risk for European call option risk valuation. Engineering Letters 29(3): 1026-1034.

Sulistianingsih, E., Rosadi, D. & Abdurakhman. 2019. Delta normal and delta gamma normal approximation in risk measurement of portfolio consisted of option and stock. In AIP Conference Proceedings, AIP Publishing LLC 2192: 090011.

Sulistianingsih, E., Martha, S., Andani, W., Umiati, W. & Astuti, A. 2023. Application of delta gamma (theta) normal approximation in risk measurement of AAPL's and GOLD's option. Media Statistika 16(2): 160-169.

Topaloglou, N., Vladimirou, H. & Zenios, S.A. 2011. Optimizing international portfolios with options and forwards. Journal of Banking & Finance 35(12): 3188-3201.

Vercher, E. & Berm dez, J.D. 2015. Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications 42(20): 7121-7131.

Wang, X., Xie, D., Jiang, J., Wu, X. & He, J. 2017. Value-at-risk estimation with stochastic interest rate models for option-bond portfolios. Finance Research Letters 21: 10-20.

Wang, Y., Chen, Y. & Liu, Y. 2016. Modeling portfolio optimization problem by probability-credibility equilibrium risk criterion. Mathematical Problems in Engineering 2016: 9461021.

Yang, Y., Ma, J. & Liang, Y. 2018. The research on the calculation of barrier options under stochastic volatility models based on the exact simulation. IAENG International Journal of Applied Mathematics 48(3): 349-361.

Zhao, S., Lu, Q., Han, L., Liu, Y. & Hu, F. 2015. A mean-cvar-skewness portfolio optimization model based on asymmetric laplace distribution. Annals of Operations Research 226(1): 727-739.

Zymler, S., Kuhn, D. & Rustem, B. 2013. Worst-case value at risk of nonlinear portfolios. Management Science 59(1): 172-188.

 

*Pengarang untuk surat-menyurat; email: dedirosadi@gadjahmada.edu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya